Course Introduction and Motivation
About Me

data intensive statistics mostly in molecular biology

website: www.jtleek.com
twitter: @jtleek, @simplystats
blog: simplystatistics.org
About me
Course information

Instructors:
● Jeff Leek
● Elizabeth Colantuoni
● Yates Coley

TAs:
● John Muschelli

Website:
● http://www.jtleek.com/advdatasci
● https://github.com/jtleek/advdatasci
More information

- Time: MW 1:30-2:20
- Location: W2009
- Lab Time: W 12:00
- Lab Location: TBA
Requirements

- Ph.D. student (2nd year) Biostatistics
- Masters student Biostatistics
- Sorry no exceptions
What is 711?

- Historically just a methods course
- Now a combination of methods/data analysis.
- Goals
 - Teach you to think about data
 - Teach you to organize an analysis
 - Help you understand current methods
 - Get you started creating your own methods
 - Teach you practical grad school skills
Course description

Provides an intensive introduction to applied statistics and data analysis. Trains students to become data scientists capable of both applied data analysis and critical evaluation of the next generation next generation of statistical methods. Since both data analysis and methods development require substantial hands-on experience, focuses on hands-on data analysis.
Learning objectives

Upon successfully completing this course, students will be able to:

1. Obtain, clean, transform, and process raw data into usable formats
2. Formulate quantitative models to address scientific questions
3. Organize and perform a complete data analysis, from exploration, to analysis, to synthesis, to communication
4. Apply a range of statistical methods for inference and prediction
What is the point of grad school?

- Freedom
- Discover new knowledge
- Time to dive deep
- Opportunity for leadership
- Opportunity to make a name for yourself
 - R packages
 - Papers
 - Blogs
- A good presentation http://pgbovine.net/phd.htm, he also has more good resources here http://pgbovine.net/phd.htm
- Get a job
What is not the point of grad school

● Grades
● Classes
● Exams
● Proving you are smart
● Competition with other students locally
Grading philosophy

I believe the purpose of graduate education is to train you to be able to think for yourself and initiate and complete your own projects. I am super excited to talk to you about ideas, work out solutions with you, and help you to figure out statistical methods and/or data analysis. I don’t think that graduate school grades are important for this purpose. This means that I don’t care very much about graduate student grades.

TL;DR I don’t care about grades and neither will anyone else
Grading policy

That being said, I have to give you a grade, so I will use grades to help communicate your progress.

1. A - Excellent
2. B - Passing
3. C - Needs improvement
Data analysis assignments

- You will do two
- All documents should be submitted electronically
- You must submit pdfs + rmds

Grading criteria

- Did you answer the scientific question? (30%)
- Did you use appropriate statistical methods? (40%)
- Was your write-up simple, clear, and precise? (20%)
- Was your code reproducible? (10%)
Data analysis reviews

After each data analysis is turned in, they will be randomly assigned to another student for review. Your review will be due one week after it is assigned. Your comments should have the format of a typical peer review. You can find a template and instructions for these reviews here https://github.com/jtleek/reviews. You should include a summary of the analyses and conclusions in the project you are reviewing, any major revisions, and any minor revisions. We will also evaluate each data analysis independently to assign a grade.
About you

- Choose a row
- Start rating your comfort with these concepts 0-10:
 - 0 = whoa never heard of that
 - 5 = pretty comfortable, but would like a refresher
 - 10 = Jeff get off the stage I got this

https://docs.google.com/spreadsheets/d/1El48mUK2FVPt_i6WIsvukFoYF1uCU00MqqLeY7W46LE/edit?usp=sharing

http://bit.ly/1Js5SGx
Tentative syllabus

- Version control
- Organize thyself
- EDA
- Regression and generalizations
- Smoothing
- Machine learning/prediction
- High dimensional data
- Simulations
Questions?
It is not the critic who counts: not the man who points out how the strong man stumbles or where the doer of deeds could have done better. The credit belongs to the man who is actually in the arena, whose face is marred by dust and sweat and blood, who strives valiantly, who errs and comes up short again and again, because there is no effort without error or shortcoming, but who knows the great enthuasisms, the great devotions, who spends himself for a worthy cause; who, at the best, knows, in the end, the triumph of high achievement, and who, at the worst, if he fails, at least he fails while daring greatly, so that his place shall never be with those cold and timid souls who knew neither victory nor defeat.
Ask yourselves, what problem have you solved, ever, that was worth solving, where you knew knew all of the given information in advance? Where you didn’t have a surplus of information and have to filter it out, or you didn’t have insufficient information and have to go find some?

Dan Myer, Mathematics Educator
Why data science?
Why data science?

MOUNTAIN VIEW, Calif. — At Harvard, Carrie Grimes majored in anthropology and archaeology and ventured to places like Honduras, where she studied Mayan settlement patterns by mapping where artifacts were found. But she was drawn to what she calls “all the computer and math stuff” that was part of the job.
Data science done well looks easy - and that is a big problem for data scientists

Data science is the process of formulating a quantitative question that can be answered with data, collecting and cleaning the data, analyzing the data, and communicating the answer to the question to a relevant audience.

In general the data science process is iterative and the different components blend together a little bit. But for simplicity let’s discretize the tasks into the following 7...
Data science is the process of formulating a quantitative question that can be answered with data, collecting and cleaning the data, analyzing the data, and communicating the answer to the question to a relevant audience.

In general the data science process is iterative and the different components blend together a little bit. But for simplicity let's discretize the tasks into the following 7 major steps:

1. **Define the question**: Formulate a clear and specific question that can be answered with data.
2. **Collect data**: Gather relevant data from various sources.
3. **Clean data**: Prepare the data for analysis by handling missing values, removing duplicates, and correcting errors.
4. **Analyze data**: Use statistical and computational tools to analyze the data and derive insights.
5. **Visualize data**: Create visual representations of the data to facilitate understanding and communication.
6. **Communicate results**: Present the findings to stakeholders in an understandable and compelling manner.
7. **Iterate**: Refine the process based on feedback and new insights.

By following these steps, data scientists can transform raw data into actionable insights and decisions.
The key word in "Data Science" is not Data, it is Science

One of my colleagues was just at a conference where they saw a presentation about using data to solve a problem where data had previously not been abundant. The speaker claimed the data were "big data" and a question from the audience was: "Well, that isn't really big data is it, it is only X Gigabytes".

While that exact question would elicit groans from most people who work with data, I think it highlights one of the key problems with the thinking around data science. Most people hyping data science have focused on the first word: data. They care about volume and velocity and whatever other buzzwords describe data that is too big for you to analyze in Excel. This hype about the size (relative or absolute) of the data being collected fed into the second category of hype - hype about tools. People threw around EC2, Hadoop, Pig, and had huge debates about Python versus R.
Data science is science

“The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data”

- John Tukey

One of my colleagues was just at a conference where they saw a presentation about using data to solve a problem where data had previously been analyzed in a certain way, and the audience was: "Well, that isn't really big data, it is only X Gigabytes".

While that exact question would elicit groans from most people who work with data, I think it highlights one of the key problems with the thinking around data science. Most people hyping data science have focused on the first word: data. They care about volume and velocity and whatever other buzzwords describe data that is too big for you to analyze in Excel. This hype about the size (relative or absolute) of the data being collected fed into the second category of hype - hype about tools. People threw around EC2, Hadoop, Pig, and had huge debates about Python versus R.
I defined data science

Data science

From Wikipedia, the free encyclopedia

Data Science is the extraction of knowledge from large volumes of data that are structured or unstructured, which is a continuation of the field data mining and predictive analytics, also known as knowledge discovery and data mining (KDD).

Unstructured data can include emails, videos, photos, social media, and other user-generated data. Data science often requires sorting through a great amount of information and writing algorithms to extract insights from this data.

This is me
What data science is not

Don't use Hadoop - your data isn't that big

"So, how much experience do you have with Big Data and Hadoop?" they asked me. I told them that I use Hadoop all the time, but rarely for jobs larger than a few TB. I'm basically a big data neophite - I know the concepts, I've written code, but never at scale.

The next question they asked me. "Could you use Hadoop to do a simple group by and sum?" Of course I could, and I just told them I needed to see an example of the file format.

They handed me a flash drive with all 600MB of their data on it (not a sample, everything). For reasons I can't understand, they were unhappy when my solution involved `pandas.read_csv` rather than Hadoop.

Hadoop is limiting. Hadoop allows you to run one general computation, which I'll illustrate in pseudocode:

Scala-ish pseudocode:

```
collection.flatMap((k,v) => F(k,v)).groupBy(_.1).map(_.reduce((k,v) => G(k,v)))
```

SQL-ish pseudocode:

```
SELECT G(...) FROM table GROUP BY F(...)```

Questions and data drive data science

How do we make better beer?
   **Data:** Measures of beer quality
   **Statistic:** The t-statistic

What characteristics of field lead to better crops?
   **Data:** Field characteristics, crop yields
   **Statistic:** Analysis of variance (ANOVA)

How long do people live?
   **Data:** Survival times of people (censored)
   **Statistic:** Kaplan-Meier Estimator

What movies will you like?
   **Data:** Lots of other peoples movie ratings
   **Statistic(s):** Recommender systems
Sub-fields of data science
(in no particular order)

1. Biostatistics
2. Data science
3. Machine learning
4. Natural language processing
5. Signal processing
6. Business analytics
7. Econometrics
8. Text mining
9. Statistics in the social sciences
10. Statistical process control
Get this Centennial Started!

The Bloomberg School welcomes students, faculty and staff to a celebratory year.
Why are you lucky?
Why are you lucky?

Example Request

GET https://api.twitter.com/1/blocks/blocking.json?cursor=-1&include_entities=true

```json
{
 "previous_cursor": 0,
 "previous_cursor_str": "0",
 "next_cursor": 0,
 "users": [],
 "profile_sidebar_border_color": "C0DEED",
 "profile_sidebar_fill_color": "DDDEEE",
 "profile_background_tile": false,
 "location": null,
 "created_at": "Thu Mar 01 00:16:47 +0000 2012",
 "profile_image_url": "http://a0.twimg.com/sticky/default_profile_images/default_profile_4_normal.png",
 "is_translator": false,
 "id_str": "509458276",
 "profile_link_color": "0084B4",
 "follow_request_sent": false,
 "contributors_enabled": false,
 "default_profile": true,
 "url": null,
 "favourites_count": 0,
 "utc_offset": null,
 "id": 509458276,
 "profile_image_url_https": "https://s10.twimg.com/sticky/default_profile_images/default_profile_4_normal.png",
 "listed_count": 0,
 "profile_use_background_image": true,
}
```
Why are you lucky?
Why are you lucky?
Why are you lucky?

GitHub Bootcamp

1. Set up Git
   A quick guide to help you get started with Git.

2. Create repositories
   Repositories are where you’ll work and collaborate on projects.

3. Fork repositories
   Forking creates a new, unique project from an existing one.

4. Work together
   Send pull requests, follow friends. Star and watch projects.

You’ve been added to the bxlab organization!

Here are some quick tips for a first-time organization member.

- Use the switch context button in the upper left corner of this page to switch between your personal context (jtleek) and organizations you are a member of.

- After you switch contexts you’ll see an organization-focused dashboard that lists out organization repositories and activities.

Repositories you contribute to

- SISBID/Module1
- leekgroup/sig2trial
- kasperdanielha.../genomics...
- smart-stats/dssquizzes
- DataScienceS.../courses
Why are you lucky?

Shiny
by RStudio

A web application framework for R
Turn your analyses into interactive web applications
No HTML, CSS, or JavaScript knowledge required

TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Get inspired (gallery)
Get started (tutorial)
Go deeper (articles)
Why are you lucky?

R Markdown — Dynamic Documents for R

R Markdown is an authoring format that enables easy creation of dynamic documents, presentations, and reports from R. It combines the core syntax of markdown (an easy-to-write plain text format) with embedded R code chunks that are run so their output can be included in the final document. R Markdown documents are fully reproduducible (they can be automatically regenerated whenever underlying R code or data changes).

This website describes R Markdown v2, a next generation implementation of R Markdown based on knitr and pandoc. This implementation brings many enhancements to R Markdown, including:

- Many available output formats including HTML, PDF, and MS Word.
- Support for creating Beamer, iosides, and Slidy presentations.
- New markdown syntax including expanded support for tables and bibliographies.
- Hooks for customizing HTML and PDF output (include CSS, headers, and footers).
- Include raw LaTeX within markdown for advanced customization of PDF output.
- Compile HTML, PDF, or MS Word notebooks from R scripts.
- Extensibility: create custom templates and even entirely new output formats.
- Create interactive R Markdown documents using Shiny.

Note that PDF output (including Beamer slides) requires a full installation of TeX.

Quick Tour

Installation

You can install the R Markdown package from CRAN as follows:

```r
install.packages("rmarkdown")
```

Markdown Basics

Markdown is a simple formatting language designed to make authoring content easy for everyone. Rather than writing complex markup code, you can use simple rules to format your text. For example:

- **Bold:** *This is bold text*
- _Italic_ text
- _Italic_ text
- Emphasis: **Bold and _Italic_**
- List:
  - Bullet point 1
  - Bullet point 2
- Code:
  ```
 print("Hello, world!")
  ```
Why are you lucky?
Why you are lucky?

- You are at the best school of public health and medicine in the world
- You are in the oldest/best department of Biostatistics in the world
- Data online is free and abundant
- It is the "1999" of data
Who is a data scientist?

A person who can find, analyze, and visualize data to both identify patterns and determine if they are real.

Daryl Morey  
Eric Lander  
Nate Silver  
Hilary Mason
What is applied statistics?

Hacking Skills

Math & Statistics Knowledge

Machine Learning

Applied Statistics

Danger Zone!

Traditional Research

Substantive Expertise

-Drew Conway
What will this course cover?

1. Translating questions into data analyses
2. Obtaining, organizing, and cleaning data
3. Performing a complete data analysis:
   1. Exploration
   2. Algorithm/model definition
   3. Analysis
   4. Synthesis and communication.
4. Statistical and computational tools
The key challenge in data analysis

Ask yourselves, what problem have you solved, ever, that was worth solving, where you knew all of the given information in advance? Where you didn’t have a surplus of information and have to filter it out, or you didn’t have insufficient information and have to go find some?

-Dan Meyer