Dependencies

This document depends on the following packages:

  library(devtools)
  library(Biobase)
  library(limma)
  library(edge)
  library(genefilter)
  library(qvalue)

To install these packages you can use the code (or if you are compiling the document, remove the eval=FALSE from the chunk.)

install.packages(c("devtools"))
source("http://www.bioconductor.org/biocLite.R")
biocLite(c("Biobase","limma","genefilter","jdstorey/edge","qvalue"))

Download the data

Here we are going to use some data from the paper Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. that is a comparative RNA-seq analysis of different mouse strains.

con =url("http://bowtie-bio.sourceforge.net/recount/ExpressionSets/bottomly_eset.RData")
load(file=con)
close(con)
bot = bottomly.eset
pdata=pData(bot)
edata=as.matrix(exprs(bot))
fdata = fData(bot)
ls()
## [1] "bot"           "bottomly.eset" "con"           "edata"        
## [5] "fdata"         "pdata"         "tropical"

Transform the data

Here we will transform the data and remove lowly expressed genes.

edata = log2(as.matrix(edata) + 1)
edata = edata[rowMeans(edata) > 10, ]

Calculate p-values parametrically

There are a number of ways to calculate p-values directly. Here are a couple of examples, but there are many data-specific ways of calculating them using packages like snpStats or DESeq2 or diffbind.

With genefilter

fstats_obj = rowFtests(edata,as.factor(pdata$strain))
hist(fstats_obj$p.value,col=2)

Adjusting for variables with edge

If you want to adjust for variables you need to use edge

edge_study = build_study(edata, grp = pdata$strain, 
                         adj.var = as.factor(pdata$lane.number))
de_obj = lrt(edge_study)
qval = qvalueObj(de_obj)
hist(qval$pvalues,col=3)

P-values for moderated statistics with limma

mod = model.matrix(~ pdata$strain + pdata$lane.number)
fit_limma = lmFit(edata,mod)
ebayes_limma = eBayes(fit_limma)
limma_pvals = topTable(ebayes_limma,number=dim(edata)[1])$P.Value
hist(limma_pvals,col=4)

Calculating empirical permutation p-values with edge

Often when you permute you are trying to calculate an empirical p-value. To do this we can compare each observed statistic to the permuted statistics. You can either compare within a single gene (argument pooled=FALSE in the empPvals function) or pooling the permuted statistics across multiple genes (argument pooled=TRUE in the empPvals function, the default).

set.seed(3333)
B = 1000
tstats_obj = rowttests(edata,pdata$strain)
tstat0 = matrix(NA,nrow=dim(edata)[1],ncol=B)
tstat = tstats_obj$statistic
strain = pdata$strain
for(i in 1:B){
  strain0 = sample(strain)
  tstat0[,i] = rowttests(edata,strain0)$statistic
}

emp_pvals = empPvals(tstat,tstat0)
hist(emp_pvals,col=2)

Multiple testing

To correct for multiple testing you can use the Bonferroni correction or different FDR corrections.

Bonferroni and Benjamini-Hochberg FDR correction with p.adjust

You can use the p.adjust function to get “multiple testing corrected” p-values which you can then use to control error rates.

fp_bonf = p.adjust(fstats_obj$p.value,method="bonferroni")
hist(fp_bonf,col=3)

quantile(fp_bonf)
##        0%       25%       50%       75%      100% 
## 0.1791152 1.0000000 1.0000000 1.0000000 1.0000000
fp_bh = p.adjust(fstats_obj$p.value,method="BH")
hist(fp_bh,col=3)

quantile(fp_bh)
##        0%       25%       50%       75%      100% 
## 0.1791152 0.8178625 0.8558812 0.9011016 0.9991666

Adjusted p-values from limma

limma_pvals_adj = topTable(ebayes_limma,number=dim(edata)[1])$adj.P.Val
hist(limma_pvals_adj,col=2)

quantile(limma_pvals_adj)
##          0%         25%         50%         75%        100% 
## 0.003270193 0.925591437 0.925591437 0.925591437 0.996066709

Direct q-values

qval_limma = qvalue(limma_pvals)
summary(qval_limma)
## 
## Call:
## qvalue(p = limma_pvals)
## 
## pi0: 0.3930485   
## 
## Cumulative number of significant calls:
## 
##           <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1   <1
## p-value        2      2     4      7    21   41 1049
## q-value        0      0     2      2     2    2 1049
## local FDR      0      0     1      2     2    2    2
qval$pi0
## [1] 1

q-values using edge

qval = qvalueObj(de_obj)
summary(qval)
## 
## Call:
## qvalue(p = pval)
## 
## pi0: 1   
## 
## Cumulative number of significant calls:
## 
##           <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1   <1
## p-value        0      0     1      2     8   20 1049
## q-value        0      0     0      0     0    0 1049
## local FDR      0      0     0      0     0    0    0

More information

Multiple testing is one of the most commmonly used tools in statistical genomics.

Session information

Here is the session information

devtools::session_info()
##  setting  value                       
##  version  R version 3.2.1 (2015-06-18)
##  system   x86_64, darwin10.8.0        
##  ui       RStudio (0.99.447)          
##  language (EN)                        
##  collate  en_US.UTF-8                 
##  tz       America/New_York            
## 
##  package           * version     date      
##  acepack             1.3-3.3     2014-11-24
##  annotate            1.46.1      2015-07-11
##  AnnotationDbi     * 1.30.1      2015-04-26
##  assertthat          0.1         2013-12-06
##  BiasedUrn         * 1.06.1      2013-12-29
##  Biobase           * 2.28.0      2015-04-17
##  BiocGenerics      * 0.14.0      2015-04-17
##  BiocInstaller     * 1.18.4      2015-07-22
##  BiocParallel        1.2.20      2015-08-07
##  biomaRt             2.24.0      2015-04-17
##  Biostrings          2.36.3      2015-08-12
##  bitops              1.0-6       2013-08-17
##  bladderbatch      * 1.6.0       2015-08-26
##  broom             * 0.3.7       2015-05-06
##  caTools             1.17.1      2014-09-10
##  cluster             2.0.3       2015-07-21
##  colorspace          1.2-6       2015-03-11
##  corpcor             1.6.8       2015-07-08
##  curl                0.9.2       2015-08-08
##  DBI               * 0.3.1       2014-09-24
##  dendextend        * 1.1.0       2015-07-31
##  DESeq2            * 1.8.1       2015-05-02
##  devtools          * 1.8.0       2015-05-09
##  digest              0.6.8       2014-12-31
##  dplyr             * 0.4.3       2015-09-01
##  edge              * 2.1.0       2015-09-06
##  evaluate            0.7.2       2015-08-13
##  foreign             0.8-66      2015-08-19
##  formatR             1.2         2015-04-21
##  Formula           * 1.2-1       2015-04-07
##  futile.logger       1.4.1       2015-04-20
##  futile.options      1.0.0       2010-04-06
##  gdata               2.17.0      2015-07-04
##  genefilter        * 1.50.0      2015-04-17
##  geneLenDataBase   * 1.4.0       2015-09-06
##  geneplotter         1.46.0      2015-04-17
##  GenomeInfoDb      * 1.4.2       2015-08-15
##  GenomicAlignments   1.4.1       2015-04-24
##  GenomicFeatures     1.20.2      2015-08-14
##  GenomicRanges     * 1.20.5      2015-06-09
##  genstats          * 0.1.02      2015-09-05
##  ggplot2           * 1.0.1       2015-03-17
##  git2r               0.11.0      2015-08-12
##  GO.db               3.1.2       2015-09-06
##  goseq             * 1.20.0      2015-04-17
##  gplots            * 2.17.0      2015-05-02
##  gridExtra           2.0.0       2015-07-14
##  gtable              0.1.2       2012-12-05
##  gtools              3.5.0       2015-05-29
##  highr               0.5         2015-04-21
##  HistData          * 0.7-5       2014-04-26
##  Hmisc             * 3.16-0      2015-04-30
##  htmltools           0.2.6       2014-09-08
##  httr                1.0.0       2015-06-25
##  IRanges           * 2.2.7       2015-08-09
##  KernSmooth          2.23-15     2015-06-29
##  knitr             * 1.11        2015-08-14
##  lambda.r            1.1.7       2015-03-20
##  lattice           * 0.20-33     2015-07-14
##  latticeExtra        0.6-26      2013-08-15
##  lazyeval            0.1.10      2015-01-02
##  limma             * 3.24.15     2015-08-06
##  lme4                1.1-9       2015-08-20
##  locfit              1.5-9.1     2013-04-20
##  magrittr            1.5         2014-11-22
##  MASS              * 7.3-43      2015-07-16
##  Matrix            * 1.2-2       2015-07-08
##  MatrixEQTL        * 2.1.1       2015-02-03
##  memoise             0.2.1       2014-04-22
##  mgcv              * 1.8-7       2015-07-23
##  minqa               1.2.4       2014-10-09
##  mnormt              1.5-3       2015-05-25
##  munsell             0.4.2       2013-07-11
##  nlme              * 3.1-122     2015-08-19
##  nloptr              1.0.4       2014-08-04
##  nnet                7.3-10      2015-06-29
##  org.Hs.eg.db      * 3.1.2       2015-07-17
##  plyr                1.8.3       2015-06-12
##  preprocessCore    * 1.30.0      2015-04-17
##  proto               0.3-10      2012-12-22
##  psych               1.5.6       2015-07-08
##  qvalue            * 2.0.0       2015-04-17
##  R6                  2.1.1       2015-08-19
##  RColorBrewer        1.1-2       2014-12-07
##  Rcpp              * 0.12.0      2015-07-25
##  RcppArmadillo     * 0.5.400.2.0 2015-08-17
##  RCurl               1.95-4.7    2015-06-30
##  reshape2            1.4.1       2014-12-06
##  rmarkdown           0.7         2015-06-13
##  rpart               4.1-10      2015-06-29
##  Rsamtools           1.20.4      2015-06-01
##  RSkittleBrewer    * 1.1         2015-09-05
##  RSQLite           * 1.0.0       2014-10-25
##  rstudioapi          0.3.1       2015-04-07
##  rtracklayer         1.28.9      2015-08-19
##  rversions           1.0.2       2015-07-13
##  S4Vectors         * 0.6.5       2015-09-01
##  scales              0.3.0       2015-08-25
##  snm                 1.16.0      2015-04-17
##  snpStats          * 1.18.0      2015-04-17
##  stringi             0.5-5       2015-06-29
##  stringr             1.0.0       2015-04-30
##  survival          * 2.38-3      2015-07-02
##  sva               * 3.14.0      2015-04-17
##  tidyr               0.2.0       2014-12-05
##  UsingR            * 2.0-5       2015-08-06
##  whisker             0.3-2       2013-04-28
##  XML                 3.98-1.3    2015-06-30
##  xml2                0.1.2       2015-09-01
##  xtable              1.7-4       2014-09-12
##  XVector             0.8.0       2015-04-17
##  yaml                2.1.13      2014-06-12
##  zlibbioc            1.14.0      2015-04-17
##  source                                      
##  CRAN (R 3.2.0)                              
##  Bioconductor                                
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.2)                              
##  Github (jdstorey/edge@a1947b5)              
##  CRAN (R 3.2.2)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  Bioconductor                                
##  local                                       
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.2)                              
##  Bioconductor                                
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.2)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  Bioconductor                                
##  CRAN (R 3.2.2)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  Github (alyssafrazee/RSkittleBrewer@0a96a20)
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.0)                              
##  Bioconductor                                
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.2)                              
##  Bioconductor                                
##  Bioconductor                                
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.2)                              
##  CRAN (R 3.2.0)                              
##  CRAN (R 3.2.1)                              
##  CRAN (R 3.2.2)                              
##  CRAN (R 3.2.0)                              
##  Bioconductor                                
##  CRAN (R 3.2.0)                              
##  Bioconductor

It is also useful to compile the time the document was processed. This document was processed on: 2015-09-06.