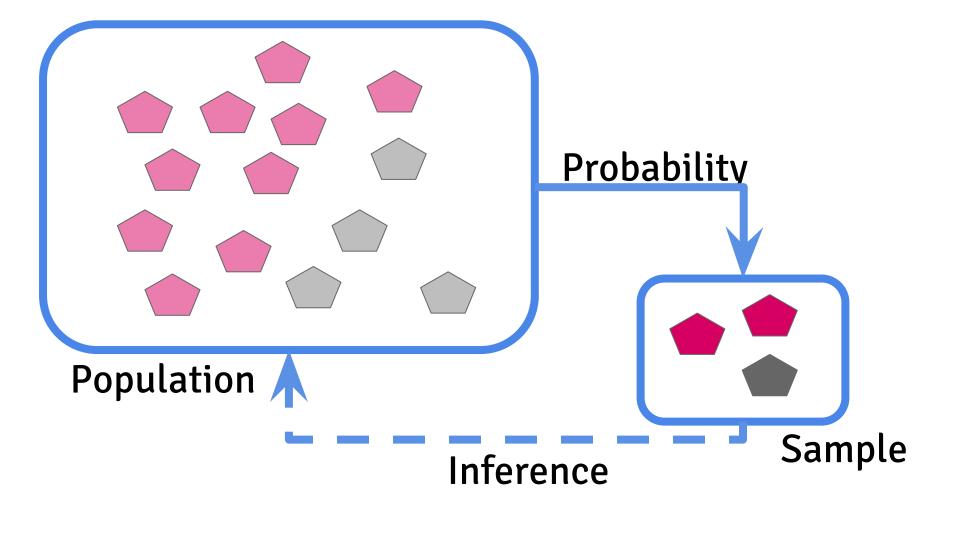
Experimental design: confounding and randomization


Jeff Leek

@jtleek

www.jtleek.com

Key ideas Confounding Batch effects Randomization

Central dogma of statistics

What is confounding?

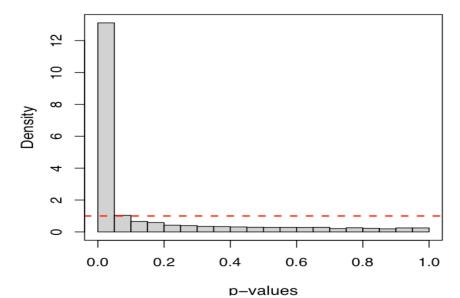
Shoe Size ??> Literacy

Shoe Size

Literacy

Shoe Size Literacy

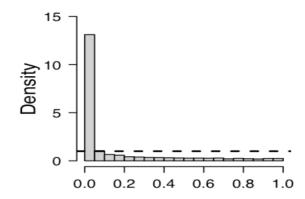
Variable1


Variable2

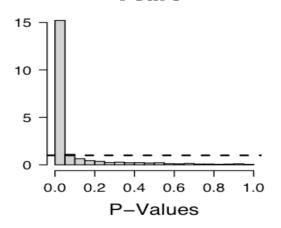
Confounder

Most common confounder: batch effects

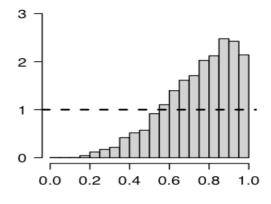
Common genetic variants account for differences in gene expression among ethnic groups


Richard S Spielman¹, Laurel A Bastone², Joshua T Burdick³, Michael Morley³, Warren J Ewens⁴ & Vivian G Cheung^{1,3,5}

78% of genes differentially expressed



Between Population


78% of genes estimated to be differentially

Between Years

96% of genes estimated to be differentially

Between Populations, Adjusting For Years

0% of genes estimated to be differentially

Extremely common

Science Express

Home > Science Magazine > Science Express > Sebastiani et al.

Current Issue

Article Views

Science Home

- Abstract
- Full Text (PDF)
- Supporting Online Material

VERSION HISTORY

- science.1190532v4 (most recent)
- > science.1190532v3
- > science.1190532v2
- > science.1190532v1

Published Online July 1 2010

Previous Issues

Science DOI: 10.1126/science.1190532

REPORT

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani¹, Nadia Solovieff¹, Annibale Puca², Stephen W. Hartley¹, Efthymia Melista², Stacy Andersen⁴, Daniel A. Dworkis², Jemma B. Wilk⁵, Richard H. Myers⁵, Martin H. Steinberg⁶,

Science Products

My Science

About the Journal

< Science Express Index

Monty Montano3, Clinton T. Baldwin 5,7 and Thomas T. Perls 4.*

Author Affiliations

To whom correspondence should be addressed. E-mail: sebas@bu.edu (P.S.); thperls@bu.edu (T.H.P.)

Science Magazine

Enter Search Term

GUEST

ACCESS RIGHT

MAAAS

NEWS

SCIENCE JOURNALS

CAREERS

BLOGS & COMMUNITIES

MULTIMEDIA

COLLECTIONS

Science The World's Leading Journal of Original Scientific Research, Global News, and Commentary.

Science Home

Current Issue

Previous Issues

Science Express

Science Products

My Science

About the Journal

Home > Science Magazine > Science Express > Sebastiani et al.

Article Views

Abstract

Full Text (PDF)

Supporting Online Material

VERSION HISTORY

- science.1190532v4 (most recent)
- science.1190532v3
- > science.1190532v2
- science.1190532v1

This article has been retracted

Published Online July 1 2010

Science DOI: 10.1126/science.1190532

REPORT

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani , Nadia Solovieff , Annibale Puca , Stephen W. Hartley , Efthymia Melista , Stacy Andersen⁴, Daniel A. Dworkis³, Jemma B. Wilk⁵, Richard H. Myers⁵, Martin H. Steinberg⁶,

Monty Montano3, Clinton T. Baldwin 5,7 and Thomas T. Perls 4.*

Author Affiliations

To whom correspondence should be addressed. E-mail: sebas@bu.edu (P.S.); thperls@bu.edu (T.H.P.)

< Science Express Index

THE LANCET

Volume 359, Issue 9306, 16 February 2002, Pages 572-577

doi:10.1016/S0140-6736(02)07746-2 | How to Cite or Link Using DOI

◆ Permissions & Reprints

Fast track - Mechanisms of Disease

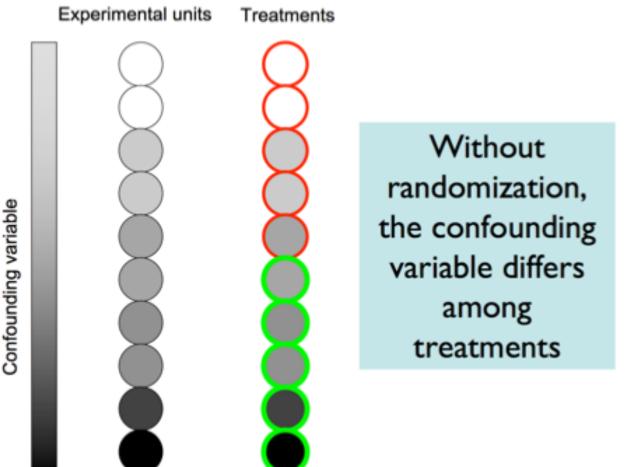
Use of proteomic patterns in serum to identify ovarian cancer

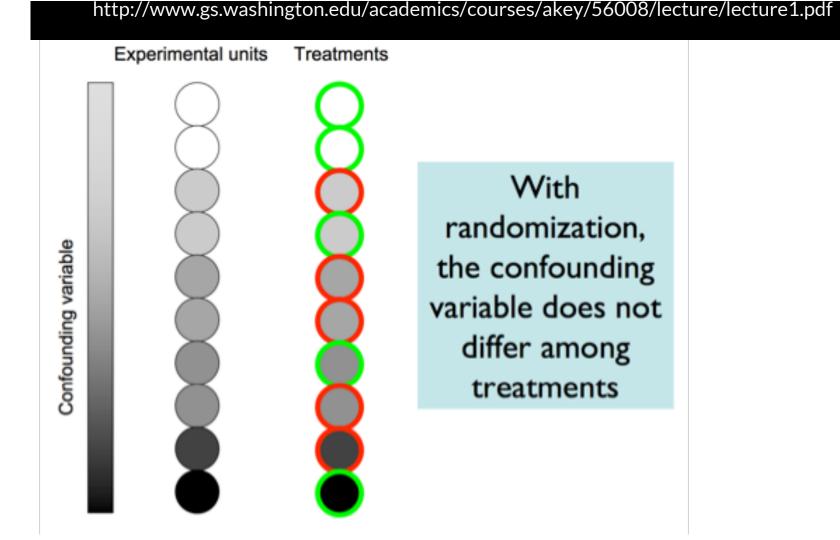
http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html

Perspective

Keith Baggerly & Rafael A. Irizarry

Nature Reviews Genetics 11, 733-739 (1 October 2010) | doi:10.1038/nr


Tackling the widespread and critical impact of batch effects in high-throughput data


Jeffrey T. Leek , Robert B. Scharpf , Héctor Corrada Bravo , David Simcha , Benjamin Langmead , W. Evan Johnson , Donald Geman ,

High-throughput technologies are widely used, for example to assay genetic variants, gene and protein expression, and epigenetic modifications. One often overlooked complication with such studies is batch effects, which occur because measurements are affected by laboratory conditions, reagent lots and personnel differences. This becomes a major problem when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. Using both published studies and our own analyses, we argue that batch effects (as well as other technical and biological artefacts) are widespread and critical to address. We review experimental and computational approaches for doing so.

Randomization

http://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture1.pdf

Stratification example

Example:

- 20 males and 20 females.
- Half to be treated; the other half left untreated.
- Can only work with 4 individuals per day.

Question:

How to assign individuals to treatment groups and to days?

A bad design

Week One						Week Two					
М	Tu	W	Th	F		М	Tu	W	Th	F	
С	С	С	С	С		Т	Т	Т	Т	т	
С	С	С	С	С		т	т	т	т	т	
С	С	С	С	С		т	т	т	т	т	
С	С	С	С	С		Т	т	т	т	т	

T = treated. C = control. pink = female. blue = male

Stratifying

T = treated, C = control, pink = female, blue = male

More good study characteristics

Balanced

- Replicated
- Has Controls