P-values

Jeff Leek

@jtleek www.jtleek.com

P-values are popular

If he was cited every time a p-value was reported his paper would have, at the very least, 3 million citations*ore making it the most highly cited paper of all time. written by Jeff Leek and Rafa Irizary.

The **p-value** is the most widely-known statistic. P-values are reported in a large majority of scientific publications that measure and report data. **R.A. Fisher** is widely credited with inventing the p-value. If he was cited every time a p-value was reported his paper would have, at the very least, 3 **million** citations* - making it the **most highly cited paper** of all time.

|--|

RECENT POSTS

The statistics department Moneyball opportunity

However, the p-value has a large number of very vocal critics. The criticisms of p-values, and hypothesis testing more generally, range from philosophical to

Know what a p-value is ... and isn't!

The probability of observing a statistic that extreme if the null hypothesis is true.

The p-value is not

- Probability the null is true
- Probability the alternative is true
- A measure of statistical evidence

Response	R	R	•••	NR	NR
----------	---	---	-----	----	----

	Patient 1	Patient 2	•••	Patient n-1	Patient n
Gene 1	-1.64	-0.42	•••	-1.39	-0.38
Gene 2	-3.12	-3.60	•••	-3.80	-2.82
:	:	:	•••	:	:
:	•	:	•••	:	:
	•	•		•	•

https://en.wikipedia.org/wiki/T-statistic

Response	R	R	•••	NR	NR
	Patient 1	Patient 2		Patient n-1	Patient <u>n</u>
Gene 1	-1.64	-0.42	•••	-1.39	-0.38
Gene 2	-3.12	-3.60	•••	-3.80	-2.82
:	:	:	••••	:	:
:	:	:		:	:
:	:	:	•••	:	:
:	:	:		:	:
Gene m-1	-2.34	-0.22	<u>•••</u>	-1.22	-2.76
Gene <u>m</u>	4.53	3.23	•••	0.29	3.11

Response	NR	R	•••	NR	R
	Patient 1	Patient 2	•••	Patient n-1	Patient <u>n</u>
Gene 1	-1.64	-0.42	<u>•••</u>	-1.39	-0.38
Gene 2	-3.12	-3.60	<u>•••</u>	-3.80	-2.82
:	:	:	•••	:	:
:	:	:		:	:
:	:	:	•••	:	:
:	:	:		:	:
Gene m-1	-2.34	-0.22	<u>•••</u>	-1.22	-2.76
Gene <u>m</u>	4.53	3.23	<u>•••</u>	0.29	3.11

Leaves the relationship between genes unchanged.

P-value properties

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

the two-groups model

the two-groups model $p \sim \pi_0 f_0 + (1 - \pi_0) f_1$

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

0.75

1.00

0.50 P-values

0 -

0.00

0.25

Notes and further reading

- P-values almost always go to zero with sample size
- The cutoff of 0.05 is a made up number
- These should be reported in conjunction with estimates/variances